Monoclonal antibodies and their use to identify morphine in biological fluids: a systematic review
Main Article Content
Abstract
Introduction: indiscriminate use of opioids has increased dependency disorder and has been linked to half a million deaths worldwide in the last year. This justifies the exploration of alternative therapies for the treatment of addiction and overdose emergencies. Specific monoclonal antibodies have been produced for morphine and its metabolites for use in analytical identification tests in biological fluids from the experimental development of vaccines against these drugs.
Objective: review scientific publications on monoclonal antibodies that identify morphine and its metabolites, to know its properties and the scope of its implementation in diagnostic tests.
Method: systematic research of scientific literature in PubMed, ScienceDirect, SciELO and LILACS databases, published until September 2021, including articles on generation of monoclonal antibodies for morphine and its metabolites, and excluding those specialized only in molecular structure, point mutations and computational molecular dynamics.
Results: 18 articles were identified where the production of 61 specific monoclonal antibodies for morphine and/or its metabolites was reported, and in which they characterized the specificity, sensitivity and/or detection range of the antibodies by evaluating 46 different substances, coupled to diagnostic tests.
Discussion and conclusions: The production of monoclonal antibodies with high sensitivity and recognition for morphine and its metabolites has allowed their use in the development of sensitive analytical tests at affordable cost, which can be implemented in the clinical diagnosis and the surveillance of the use of these substances in the population.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Berzina, A. G., Gamaleya, N. B., Sergeeva, V. E., Trofimov, A. V., Krotov, G., & Ul’yanova, L. I. (2016). Production of polyclonal and monoclonal antibodies against two morphine derivatives. Voprosy Narkologii, 11(12), 39-54. (En ruso) https://www.elibrary.ru/item.asp?id=30024412
Brennan, J., Dillon, P., & O’Kennedy, R. (2003). Production, purification and characterization of genetically derived scFv and bifunctional antibody fragments capable of detecting illicit drug residues. Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences, 25, 786(1-2), 327-42. https://doi.org/10.1016/s1570-0232(02)00807-3
Cao, J., Chen, X. Y., & Zhao, W. R. (2019). Determination of Morphine in Human Urine by the Novel Competitive Fluorescence Immunoassay. Journal of Analytical Methods in Chemistry, 2019, Article ID 7826090. https://doi.org/10.1155/2019/7826090
Dehghannezhad, A., Paknejad, M., Rasaee, M. J., Omidfar, K., Seyyed-Ebrahimi, S. S. & Ghahremani, H. (2012). Development of a Nanogold-Based Immunochromatographic Assay for Detection of Morphine in Urine Using the Amor-HK16 Monoclonal Antibody. Hybridoma, 31(6), 411-116. https://doi.org/10.1089/hyb.2012.0059
Dillon, P. P., Daly, S. J., Manning, B. M., & O’Kennedy, R. (2003) Immunoassay for the determination of morphine-3-glucuronide using a surface plasmon resonance-based biosensor. Biosensors and Bioelectronics, 18(2-3), 217-227. https://doi.org/10.1016/s0956-5663(02)00182-3
Dinis-Oliveira, R., J. (2019) Metabolism and metabolomics of opiates: A long way of forensic implications to unravel. Journal of Forensic and Legal Medicine, 61, 128-140. https://doi.org/10.1016/j.jflm.2018.12.005
Droupadi, P. R., Meyers, E. A., & Linthicum, D. S. (1994). Spectroscopic evidence for charge-transfer complexation in monoclonal antibodies that bind opiates. Journal of Protein Chemistry, 13(3), 297-306. https://doi.org/10.1007/bf01901562
Eldefrawi, M. E., Azer, N. L., Nath, N., Anis, N. A., Bangalore, M. S., O’Connell, K. P., Schwartz, R. P. & Wright, J. (2000). A sensitive solid-phase fluoroimmunoassay for detection of opiates in urine. Applied Biochemistry and Biotechnology, 87(1), 25-35. https://doi.org/10.1385/abab:87:1:25
Fleiz-Bautista, C., Domínguez-García, M., Villatoro-Velázquez, J. A., Vázquez-Quiroz, F., Zafra-Mora, E., Sánchez-Ramos, R., Resendiz-Escobar, E., Bustos-Gamiño, M., & Medina-Mora, M. E. (2019). Cuqueando la Chiva: Contextos del consumo de heroína en la frontera norte de México... Ciudad de México, México: INPRFM.
Glasel, J. A., Braudbury, W. M., & Venn, R. F. (1983). Properties of murine anti-morphine antibodies. Molecular Immunology, 20(12), 1419-1422. https://doi.org/10.1016/0161-5890(83)90175-x
Kashanian, S., Shams, A., Ghahremani, H., & Paknejad, M. (2015) Preparation and Characterization of a Monoclonal Antibody Against Morphine. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 34(4), 270-274. https://doi.org/10.1089/mab.2014.0098
Khademi, H., Kamangar, F., Brennan, P., & Malekzadeh, R. (2016). Opioid therapy and its side effects: A Review. Archives of Iranian Medicine, 19(12), 870-876. http://www.aimjournal.ir/Article/1105
Matsukizono, M., Kamegawa, M., Tanaka, K., Kohra, S., Arizono, K., Hamazoe, Y., & Sugimura, K. (2013). Characterization of a Single Chain Fv Antibody that Reacts with Free Morphine. Antibodies, 2(1), 93-112. https://doi.org/10.3390/antib2010093
Moghaddam, A., Borgen, T., Stacy, J., Kausmally, L., Simonsen, B., Marvik, O. J., Brekke, O. H. & Braunagel, M. (2003). Identification of scFv antibody fragments that specifically recognize the heroin metabolite 6-monoacetylmorphine but not morphine. Journal of Immunological Methods, 280(1-2), 139-155. https://doi.org/10.1016/s0022-1759(03)00109-1
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al. (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
Paknejad, M. (2010). Monoclonal Antibody Amor-HK16 Against Morphine. Hybridoma, 29(1), 78. https://doi.org/10.1089/hyb.2009.0083.MAb
Pozharski, E., Wilson, M. A., Hewagama, A., Shanafelt, A. B, Petsko, G., & Ringe, D. (2004). Anchoring a Cationic Ligand: The Structure of the Fab Fragment of the Anti-morphine Antibody 9B1 and its Complex with Morphine. Journal of Molecular Biology, 337(3), 691-697. https://doi.org/10.1016/j.jmb.2003.12.084
Rahbarizadeh, F., Rasaee, M. J., Madani, R., Rahbarizadeh, M. H., & Omidfar, K. (2000). Preparation and Characterization of Specific and High-Affinity Monoclonal Antibodies Against Morphine. Hybridoma, 19(5), 413-417. https://doi.org/10.1089/02724570050198938
Sawada, J., Janejai, N., Nagamatsu, K., & Terao, T. (1988). Production and characterization of high-affinity monoclonal antibodies against morphine. Molecular Immunology, 25(9), 937-943. https://doi.org/10.1016/0161-5890(88)90133-2
Townsend, E. A., & Banks, M. L. (2020). Preclinical Evaluation of Vaccines to Treat Opioid Use Disorders: How Close are We to a Clinically Viable Therapeutic? CNS Drugs, 34, 449-461. https://doi.org/10.1007/s40263-020-00722-8
Trofimov, A. V., Sokolov, A. V., Rak, A. Y., Ischenko, A. M., Kudling, T. V., Vakhrushev, A. V., & Gorbunov, A. A. (2020) Epitope specificity of two anti-morphine monoclonal antibodies: In vitro and in silico studies. Journal of Molecular Recognition, 33(9), e2845. https://doi.org/10.1002/jmr.2845
Usagawa, T., Itoh, Y., Hifumi, E., Takeyasu, A., Nakahara, Y., & Uda, T. (1993) Characterization of morphine-specific monoclonal antibodies showing minimal cross-reactivity with codeine. Journal of Immunological Methods, 157(1-2), 143-148. https://doi.org/10.1016/0022-1759(93)90080-q
Volkow, N. D., Jones, E. B., Einstein, E. B., & Wargo, E. M. (2019) Prevention and Treatment of Opioid Misuse and Addiction: A Review. JAMA Psychiatry, 76(2), 208-216. https://doi.org/10.1001/jamapsychiatry.2018.3126
World Drug Report 2021 (United Nations publication, Sales No. E.21.XI.8).
Yang, T. B., Zhong, P., Nie, J. L., Li, J. S., Qu, L. N., Li, Y. H., & Kan, G. H. (2002). Preparation and Identification of Specific and High-Affinity Monoclonal Antibodies Against Morphine. Hybridoma and Hybridomics, 21(3), 197-201. https://doi.org/10.1089/153685902760173926