Recreative marijuana risks vs. cannabinoids utility in COVID-19
Main Article Content
Abstract
Introduction: the SARS-CoV-2 virus pandemic has caused a crisis in the health sector due to the lack of medical and pharmacological resources to treat the COVID-19 disease. Recent findings have shown that some compounds isolated from cannabis can reduce the entry of the SARS-CoV-2 virus into host cells, and prevent the proinflammatory cytokine storm, which is why they are considered drugs with potential for the treatment of COVID-19. On the other hand, frequent or chronic recreational use of cannabis may facilitate SARS-CoV-2 infection by depressing the immune system but also promote proinflammatory cytokine storm, worsening the disease.
Objective: to discuss the proposed mechanisms of action of cannabinoids in the treatment of COVID-19 and the difference between the immunological effects produced by the chronic recreational use of marijuana and the pharmacological use of the isolated and purified compounds of cannabis for the treatment of this disease.
Method: the most recent scientific articles published in PubMed were browsed, in which the effects of cannabinoids in relation to the SARS-CoV-2 virus were studied, as well as articles about the effects of chronic cannabis use on the immune system.
Discussion and conclusions: high and frequent use of marijuana could worsen the disease caused by SARS-CoV-2, while the use of isolated and purified compounds can attenuate COVID-19 disease.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Almogi-Hazan, O., & Or, R. (2020). Cannabis, the Endocannabinoid System and Immunity-the Journey from the Bedside to the Bench and Back. International Journal of Molecular Sciences, 21(12), 4448. https://doi.org/10.3390/ijms21124448
Anil, S. M., Shalev, N., Vinayaka, A. C., Nadarajan, S., Namdar, D., Belausov, E., Shoval, I., Mani, K. A., Mechrez, G., & Koltai, H. (2021). Cannabis compounds exhibit anti-inflammatory activity in vitro in COVID-19-related inflammation in lung epithelial cells and pro-inflammatory activity in macrophages. Scientific Reports, 11(1), 1462. https://doi.org/10.1038/s41598-021-81049-2
Assiri, S. A., Althaqafi, R. M. M., Alswat, K., Alghamdi, A. A., Alomairi, N. E., Nemenqani, D. M., Ibrahim, Z. S., & Elkady, A. (2022). Post COVID-19 Vaccination-Associated Neurological Complications. Neuropsychiatric Disease and Treatment, 18, 137-154. https://doi.org/10.2147/ndt.s343438
Bayazit, H., Selek, S., Karababa, I. F., Cicek, E., & Aksoy, N. (2017). Evaluation of Oxidant/Antioxidant Status and Cytokine Levels in Patients with Cannabis Use Disorder. Clinical Psychopharmacology and Neuroscience, 15(3), 237-242. https://doi.org/10.9758/cpn.2017.15.3.237
Bilotta, C., Perrone, G., Adelfio, V., Spatola, G. F., Uzzo, M. L., Argo, A., & Zerbo, S. (2021). COVID-19 Vaccine-Related Thrombosis: A Systematic Review and Exploratory Analysis. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.729251
Cravatt, B. F., Prospéro-García, Ó., Siuzdak, G., Gilula, N. B., Henriksen, S. J., Boger, D. L., & Lerner, R. A. (1995). Chemical characterization of a family of brain lipids that induce sleep. Science, 268(5216), 1506-1509. https://doi.org/10.1126/science.7770779
Darwish, I., Mubareka, S., & Liles, W. C. (2011). Immunomodulatory therapy for severe influenza. Expert Review of Anti-infective Therapy, 9(7), 807-822. https://doi.org/10.1586/eri.11.56
De Almeida, D. L., & Devi, L. A. (2020). Diversity of molecular targets and signaling pathways for CBD. Pharmacology Research & Perspectives, 8(6), e00682. https://doi.org/10.1002/prp2.682
Dionisi, M., Alexander, S. P., & Bennett, A. J. (2012). Oleamide activates peroxisome proliferator-activated receptor gamma (PPARgamma) in vitro. Lipids in Health and Disease, 11(1), 51. https://doi.org/10.1186/1476-511x-11-51
Hegde, V. L., Singh, U. P., Nagarkatti, P. S., & Nagarkatti, M. (2015). Critical Role of Mast Cells and Peroxisome Proliferator-Activated Receptor gamma in the Induction of Myeloid-Derived Suppressor Cells by Marijuana Cannabidiol In Vivo. The Journal of Immunology, 194(11), 5211-5222. https://doi.org/10.4049/jimmunol.1401844
Hernández-Cervantes, R., Pérez-Torres, A., Prospéro-García, Ó., & Morales Montor, J. (2019). Gestational exposure to the cannabinoid WIN 55,212-2 and its effect on the innate intestinal immune response. Scientific Reports, 9(1), 20340. https://doi.org/10.1038/s41598-019-56653-y
Jean-Gilles, L., Braitch, M., Latif, M. L., Aram, J., Fahey, A. J., Edwards, L. J., Robins, R. A., Tanasescu, R., Tighe, P. J., Gran, B., Showe, L. C., Alexander, S. P., Chapman, V., Kendall, D. A., & Constantinescu, C. S. (2015). Effects of pro-inflammatory cytokines on cannabinoid CB1 and CB2 receptors in immune cells. Acta Physiologica, 214(1), 63-74. https://doi.org/10.1111/apha.12474
Kaczynski, M., & Mylonakis, E. (2022). 80% of patients with COVID-19 have >/=1 long-term effect at 14 to 110 d after initial symptoms. Annals of Internal Medicine, 175(1), JC10. https://doi.org/10.7326/j21-0007
Liu, X., Wang, H., Shi, S., & Xiao, J. (2021). Association between IL-6 and severe disease and mortality in COVID-19 disease: a systematic review and meta-analysis. Postgraduate Medical Journal, 98(1165), 871-879. https://doi.org/10.1136/postgradmedj-2021-139939
Lowe, H. I., Toyang, N. J., & McLaughlin, W. (2017). Potential of Cannabidiol for the Treatment of Viral Hepatitis. Pharmacognosy Research, 9(1), 116-118. https://doi.org/10.4103/0974-8490.199780
Mabou Tagne, A., Marino, F., Legnaro, M., Luini, A., Pacchetti, B., & Cosentino, M. (2019). A Novel Standardized Cannabis sativa L. Extract and Its Constituent Cannabidiol Inhibit Human Polymorphonuclear Leukocyte Functions. International Journal of Molecular Sciences, 20(8) 1833. https://doi.org/10.3390/ijms20081833
Mamoon, N. & Rasskin, G. (s.f.). COVID-19 Visualizer. Recuperado el 6 de junio 2022 de https://www.covidvisualizer.com
Mancuso, P., Venturelli, F., Vicentini, M., Perilli, C., Larosa, E., Bisaccia, E., Bedeschi, E., Zerbini, A., & Rossi, P. G. (2020). Temporal profile and determinants of viral shedding and of viral clearance confirmation on nasopharyngeal swabs from SARS-CoV-2-positive subjects: a population-based prospective cohort study in Reggio Emilia, Italy. BMJ Open, 10(8), e040380. https://doi.org/10.1136/bmjopen-2020-040380
Naresh, G., & Guruprasad, L. (2022). Mutations in the receptor-binding domain of human SARS CoV-2 spike protein increases its affinity to bind human ACE-2 receptor. Journal of Biomolecular Structure and Dynamics, 1-14. https://doi.org/10.1080/07391102.2022.2032354
Nguyen, L. C., Yang, D., Nicolaescu, V., Best, T. J., Gula, H., Saxena, D., Gabbard, J. D., Chen, S. N., Ohtsuki, T., Friesen, J. B., Drayman, N., Mohamed, A., Dann, C., Silva, D., Robinson-Mailman, L., Valdespino, A., Stock, L., Suárez, E., Jones, K. A., … Rosner, M. R. (2022). Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses. Science Advances, 8(8), eabi6110. https://doi.org/10.1126/sciadv.abi6110
Nguyen, L. C., Yang, D., Nicolaescu, V., Best, T. J., Ohtsuki, T., Chen, S. N., Brent, J., Drayman, N., Mohamed, A., Dann, C., Silva, D., Gula, H., Jones, K., Millis, J., Dickinson, B., Tay, S., Oakes, S., Pauli, G., Meltzer, D., Randall, G., & Rosner, M. (2021). Cannabidiol Inhibits SARS-CoV-2 Replication and Promotes the Host Innate Immune Response. bioRxiv. 2021.03.10.432967 https://doi.org/10.1101/2021.03.10.432967
Nichols, J. M., & Kaplan, B. L. F. (2020). Immune Responses Regulated by Cannabidiol. Cannabis Cannabinoid Research, 5(1), 12-31. https://doi.org/10.1089/can.2018.0073
Peluso, M. J., Kelly, J. D., Lu, S., Goldberg, S. A., Davidson, M. C., Mathur, S., Durstenfeld, M. S., Spinelli, M. A., Hoh, R., Tai, V., Fehrman, E. A., Torres, L., Hernandez, Y., Williams, M. C., Arreguin, M. I., Ngo, L. H., Deswal, M., Munter, S. E., Martinez, E. O., … Martin, J. N. (2021). Persistence, Magnitude, and Patterns of Postacute Symptoms and Quality of Life Following Onset of SARS-CoV-2 Infection: Cohort Description and Approaches for Measurement. Open Forum Infectious Disease, 9(2). https://doi.org/10.1093/ofid/ofab640
Prospéro-García, Ó., Ruiz Contreras, A. E., Ortega Gomez, A., Herrera-Solis, A., Mendez-Diaz, M. (2019). Endocannabinoids as Therapeutic Targets. Archives of Medical Research, 50(8), 518-526. https://doi.org/10.1016/j.arcmed.2019.09.005
Rambaut, A., Holmes, E. C., O’Toole, A., Hill, V., McCrone, J. T., Ruis, C., du Plessis, L., & Pybus, O. G. (2020). A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nature Microbiology, 5(11), 1403-1407. https://doi.org/10.1038/s41564-020-0770-5
Ribeiro, A., Almeida, V. I., Costola-de-Souza, C., Ferraz-de-Paula, V., Pinheiro, M. L., Vitoretti, L. B., Gimenes-Junior, J. A., Akamine, A. T., Crippa, J. A., Tavares-de-Lima, W., & Palermo-Neto, J. (2014). Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury. Immunopharmacology and Immunotoxicology, 37(1), 35-41. https://doi.org/10.3109/08923973.2014.976794
Rizzo, M. D., Crawford, R. B., Bach, A., Sermet, S., Amalfitano, A., & Kaminski, N. E. (2019). Δ9Tetrahydrocannabinol Suppresses Monocyte-Mediated Astrocyte Production of Monocyte Chemoattractant Protein 1 and Interleukin-6 in a Toll-Like Receptor 7-Stimulated Human Coculture. Journal of Pharmacology and Experimental Therapeutics, 371(1), 191-201. https://doi.org/10.1124/jpet.119.260661
Staiano, R. I., Loffredo, S., Borriello, F., Iannotti, F. A., Piscitelli, F., Orlando, P., Secondo, A., Granata, F., Lepore, M. T., Fiorelli, A., Varricchi, G., Santini, M., Triggiani, M., Di Marzo, V., & Marone, G. (2015). Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors. Journal of Leukocyte Biology, 99(4), 531-540. https://doi.org/10.1189/jlb.3hi1214-584r
Tisoncik, J. R., Korth, M. J., Simmons, C. P., Farrar, J., Martin, T. R., & Katze, M. G. (2012). Into the eye of the cytokine storm. Microbiology and Molecular Biology Reviews, 76(1), 16-32. https://doi.org/10.1128/mmbr.05015-11
van Breemen, R. B., Muchiri, R. N., Bates, T. A., Weinstein, J. B., Leier, H. C., Farley, S., & Tafesse, F. G. (2022). Cannabinoids Block Cellular Entry of SARS-CoV-2 and the Emerging Variants. Journal of Natural Products, 85(1), 176-184. https://doi.org/10.1021/acs.jnatprod.1c00946
Yang, Y., Shen, C., Li, J., Yuan, J., Yang, M., Wang, F., Li, G., Li, Y., Xing, L., Peng, L., Wei, J., Cao, M., Zheng, H., Wu, W., Zou, R., Li, D., Xu, Z., Wang, H., Zhang, M., … Liu, Y. (2020). Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome. medRxiv, 2020.03.02.20029975. https://doi.org/10.1101/2020.03.02.20029975