Mathematical modeling of neurobiological model of drug addiction
Main Article Content
Abstract
Introduction: addiction is considered a central nervous system disease that consists of three stages: intoxication, withdrawal and craving. The neurobiological model of addictions proposed by Volkow et al. (2003) includes the states of control, memory, motivation and reward, however, in order to generate an explicit and universal solution to this disease is necessary to mathematize theoretical models.
Objective: to propose and to develop the mathematization of a stochastic model using Markov Chains in the phenomenon of psychoactive substances and addiction.
Method: mathematization of a stochastic model using Markov Chains and differential equations.
Results: using Markov Chains, models of two brains were compared, one healthy (no consumer of psychoactive substances) against one of a person with addiction and through transition probabilities we observed differences from one model to another. Differential equations were used to estimate the time of the effect of a drug in the body and combined with trigonometric equations we sought to estimate the best function to continue with an addiction and relapse.
Discussion and conclusions: the obtained mathematical modeling indicates that the neurobiological model of addictions may be represented by a Markov Chain inhomogeneous. In the case of a healthy brain, it can pass with equal probability (p = 1/3) from one state to another, in the case of a person with addiction, the transition probabilities depend on time, drug type, dose and route of administration.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Ahn, W. Y., Vasilev, G., Lee, S. H., Busemeyer, J. R., Kruschke, J. K., Bechara, A., … Vassileva, J. (2014). Decision-making in stimulant and opiate addicts in protracted abstinence: evidence from computational modeling with pure users. Frontiers in Psychology, 5, 849.doi.10.33.889/fpsyg.2014.00849
American Psychiatric Association. (2006). General Treatment Principles. En American Psychiatric Association.Practical guidelines for the treatment of patients with substance use disorders(2nd ed., pp. 27-94). Arlington, Virginia: Autor.
American Psychiatric Association. (2013).Diagnostic and Statistical Manual of Mental Disorders.[5th ed.]. Arlington, Virginia: Autor.
Becoña-Iglesias, E. (Ed.) (2002). Introducción. En Becoña-Iglesias, E. (Ed.).Bases Científicas de la prevención de las Drogodependencias (pp. 19-59). Madrid, España: Ministerio del Interior, Delegación del Gobierno para el Plan Nacional sobre Drogas, Secretaría General Técnica.
Behrens, D. A., Caulkins, J. P., Tragler, G., Haunschmied, J. L., & Feichtinger, G. (1999). A dynamic model of drug initiation: implications for treatment and drug control Mathematical.Biosciences, 159(1), 1-20.
Boccara, V., Delhomme, P., Vidal-Gomel, C., & Rogalski, J. (2011). Development of student drivers’ self-assessment accuracy during French driver training: self-assessments compared to instructors’ assessments in three risky driving situationsAccident Analysis & Prevention,43(4), 1488-1496.
Borack, J. I. (1998). An estimate of the impact of drug testing on the deterrence of drug use. Military Psychology, 10(1), 17-25.
Caballero, M. E., & Rivero, V. M. (2004).Cadenas de Markov. Un enfoque elemental. México: Sociedad Matemática Mexicana.
Caulkins, J. P., Behrens, D. A., Knoll, C., Tragler, G., & Zuba, D. (2004). Markov chain modeling of initiation and demand: the case of the U.S. cocaine epidemic. Journal of Health Care Management, 7(4)319-329.
Everingham, S. S., & Rydell, C. P. (1994). Modeling the demand for cocaine. Estados Unidos: Office of National Drug Control Policy.
Farfán-Márquez, R. M., & Simón-Ramos, M. G. (2013). Género y desarrollo del talento en matemáticas. En Flores, R. (Ed.). Acta Latinoamericana de Matemática Educativa, 26(pp. 1231-1240). México: Colegio Mexicano de Matemática Educativa, A. C. y Comité Latinoamericano de Matemática Educativa, A. C. Recuperado de http://www.clame.org.mx/documentos/alme26v.2.pdf
Flores-Samaniego, A. H., & Gómez-Reyes, A. (2013). La modelación matemática y la enseñanza de las cónicas. Acta Latinoamericana de Matemática Educativa, 26 (pp. 1179-1185). México:Colegio Mexicano de Matemática Educativa, A. C. y Comité Latinoamericano de Matemática Educativa, A. C. Recuperado de http://www.clame.org.mx/documentos/alme26v.2.pdf
Graham, J. W., Collins, L. M., Wugalter, S. E., Chung, N. K., & Hansen, W. B. (1991). Modeling transitions in latent stage-sequential processes: a substance use prevention exampleJournal of Consulting and Clinical Psychology, 59(1),48-57.
Killeen, P. R. (2011). Markov model of smoking cessation. Proceedings of the National Academy of Sciences, 108(3)15549-15556.
Koob, G. F., & Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology, 35(1)217-238.
López, A., & Becoña, E. (2006). El craving en personas dependientes de la cocaína. Anales de Psicología, 22(2), 205-211 Recuperado de http://revistas.um.es/analesps/article/view/25811/25041
Marín-Navarrete, R., Benjet, C., Borges, G., Eliosa-Hernández, A., Nanni-Alvarado, R., Ayala-Ledesma, M., … Medina- Mora, M. E. (2013). Comorbilidad de los trastornos por consumo de sustancias con otros trastornos psiquiátricos en Centros Residenciales de Ayuda-Mutua para la Atención de las Adicciones.Salud Mental, 36(6), 471-479.
Markou, A., Kosten, T. R., & Koob, G. F. (1998). Neurobiological similarities in depression and drug dependence: a self-medication hypothesisNeuropsychopharmacology, 18(3), 135-174.
Maruotti, A., & Rocci, R. (2012). A mixed non-homogeneous hidden Markov model for categorical data, with application to alcohol consumptionStatistics in Medicine, 31(9), 871-86.doi: 10.1002/sim.4478
Meier, J., Dietz, A., Boehm, A., & Neumuth, T. (2015) Predicting treatment process steps from events. Journal of Biomedical Informatics, 53,308-319 doi: 10.1016/j.jbi.2014.12.003
Mercedes-Ayala, M., Garzón, M., & Malagón, F. (2007). Consideraciones sobre la formalización y matematización de los fenómenos físicos. Praxis Filosófica25, 39-54.
Milne, R. J. (1998). Pharmacoeconomic models in disease management. A guide for the novice or the perplexed. Disease Management & Health Outcomes, 4(3),119-134.
Ocaña-Riola, R. (2009). Modelos de Markov aplicados a la investigación en ciencias de la salud.. Interciencia, 34(3), 157-162.
Organización Mundial de la Salud. (2008). Clasificación de los trastornos mentales y del comportamiento de la CIE 10.Madrid: Meditor.
Parra-Bermúdez, F. J., Ávila-Godoy, R. J., & Ávila-Godoy, J. (2013). El significado del objeto matemático proporcionalidad. Su origen y desarrollo Acta Latinoamericana de Matemática Educativa, 26 26 (pp. 1241-1249). México: Colegio Mexicano de Matemática Educativa, A. C. y Comité Latinoamericano de Matemática Educativa, A. C. Recuperado de http://www.clame.org.mx/documentos/alme26v.2.pdf.
Pineda-Ortiz, J., & Torrecilla-Sesma, M. (1999). Mecanismos neurobiológicos de la adicción a drogas. Trastornos Adictivos, 1(1), 1-12.
Rutter, M. (2006). Implications of resilience concepts for scientific understanding Annals of the New York Academy of Sciences, 10941-12. doi: 10.1196/annals.1376.002
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward.Science, 2751593-1599.
Shumway, M., Chouljian, T. L., & Hargreaves, W. A. (1994). Patterns of substance use in schizophrenia: a Markov modeling approachJournal of Psychiatry Research, 28(3), 277-287.
Villatoro-Velázquez, J. A., Mendoza-Meléndez, M. A., Moreno-López, M., Oliva-Robles, N., Fregoso-Ito, D., Bustos-Garmiño, M. C., … Medina-Mora, M. E. (2014). Tendencias del uso de drogas en la Ciudad de México: Encuesta de estudiantes,octubre 2012.Salud Mental, 37(5)423-435.
Volkow, N. D., & Morales, M. (2015). The brain on drugs: from reward to addiction. Cell, 162(4),712-725.doi: 10.1016/j.cell.2015.07.046
Volkow, N. D., Fowler, J. S., & Wang, G. J. (2003). The addicted human brain: insights from imaging studies. Journal of Clinical Investigation, 111(10), 1444-1451.
Volkow, N. D., Koob, G. F., & McLellan, A. T. (2016). Neurobiologic advances from the brain disease model of addiction. The New England Journal of Medicine: Research & Review, 374(4),(363-371. doi: 10.1056/NEJMra1511480