Adverse Psychosocial Relationships and Substance Use Disorder: a Narrative Review
Main Article Content
Abstract
Introduction: Substance abuse is recognized as a brain disorder that primarily affects two systems: the motivation-reward system and the defense system. The former is responsible for modulating behaviors aimed at obtaining pleasurable reinforcers such as social interactions and food. Frequent drug use diminishes the response of this system, leading to tolerance to hedonic effects. The defense system, oriented towards safeguarding the individual’s physical integrity, responds to threatening stimuli by generating sensations of fear or anxiety and displays an antifragile nature.
Objective: to describe the interaction between these systems, which is altered by frequent drug use. This leads to a diminished response of the motivation-reward system and an increased response of the defense system, as well as the effect of adverse social interactions between the two.
Method: recent scientific articles published in PubMed were browsed and critically reviewed; both human and animal studies were included.
Discussion and conclusions: adverse social interactions, such as neglectful parenting and child abuse, promote an allostatic load and strengthen the antifragile nature of the defense system, favoring and maintaining drug consumption. In animal models, it has been observed that maternal care deprivation in the early days of life leads to maladaptive behaviors in adulthood and increased alcohol consumption. Similarly, subordinate animals consume more drugs than their dominant counterparts. These findings suggest a complex relationship between early adverse experiences, the development of the reward and defense systems, and vulnerability to addiction.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Amancio-Belmont, O., Becerril Meléndez, A., Ruiz-Contreras, A., Méndez-Díaz, M., & Prospéro-García, O. (2020). Maternal separation plus social isolation during adolescence reprogram brain dopamine and endocannabinoid systems and facilitate alcohol intake in rats. Brain Research Bulletin, 164, 21-28. https://doi.org/10.1016/j.brainresbull.2020.08.002
Berridge, K. (2019). Affective valence in the brain: modules or modes? Nature Reviews Neuroscience, 20(4), 225-234. https://doi.org/10.1038/s41583-019-0122-8
Berridge, K., & Kringelbach, M. (2015). Pleasure Systems in the Brain. Neuron, 86(3), 646-664. https://doi.org/10.1016/j.neuron.2015.02.018
Bramson, B., Meijer, S., van Nuland, A., Toni, I., & Roelofs, K. (2023). Anxious individuals shift emotion control from lateral frontal pole to dorsolateral prefrontal cortex. Nature Communications, 14(1), 4880. https://doi.org/10.1038/s41467-023-40666-3
Castro-Zavala, A., Martín-Sánchez, A., Montalvo-Martínez, L., Camacho-Morales, A., & Valverde, O. (2021). Cocaine-seeking behaviour is differentially expressed in male and female mice exposed to maternal separation and is associated with alterations in AMPA receptors subunits in the medial prefrontal cortex. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 109, 110262. https://doi.org/10.1016/j.pnpbp.2021.110262
Fan, J., Miller, H., Adams, A., Bryan, R., & Salzman, M. (2023). Allostatic load in opioid use disorder: a scoping review protocol. BMJ Open, 13(3), e060522. https://doi.org/10.1136/bmjopen-2021-060522
George, O., Le Moal, M., & Koob, G. (2012). Allostasis and addiction: Role of the dopamine and corticotropin-releasing factor systems. Physiology & Behavior, 106(1), 58-64. https://doi.org/10.1016/j.physbeh.2011.11.004
Guo, H., Guo, J., Gao, Z., Luo, F., & Zhang, E. (2023). The role of amygdala-ventral pallidum pathway in depression-like behaviors in male mice. Journal of Neuroscience Research, 102(1), e25258. https://doi.org/10.1002/jnr.25258
Hazekamp, A., Ware, M., Muller-Vahl, K., Abrams, D., & Grotenhermen, F. (2013). The Medicinal Use of Cannabis and Cannabinoids—An International Cross-Sectional Survey on Administration Forms. Journal of Psychoactive Drugs, 45(3), 199-210. https://doi.org/10.1080/02791072.2013.805976
Heilig, M., Epstein, D., Nader, M., & Shaham, Y. (2016). Time to connect: bringing social context into addiction neuroscience. Nature Reviews Neuroscience, 17(9), 592-599. https://doi.org/10.1038/nrn.2016.67
Hernández-Mondragón, J., Hernández-Hernández, D., Crespo-Ramírez, M., Prospéro-García, O., Rocha-Arrieta, L., Fuxe, K., Borroto-Escuela, D., & Perez, M. (2023). Evidence for the existence of facilitatory interactions between the dopamine D2 receptor and the oxytocin receptor in the amygdala of the rat. Relevance for anxiolytic actions. Frontiers in Pharmacology, 14, 1251922. https://doi.org/10.3389/fphar.2023.1251922
Junghofer, M., Winker, C., Rehbein, M., & Sabatinelli, D. (2017). Noninvasive Stimulation of the Ventromedial Prefrontal Cortex Enhances Pleasant Scene Processing. Cerebral Cortex, 27(6), 3449-3456. https://doi.org/10.1093/cercor/bhx073
Jupp, B., Murray, J., Jordan, E., Xia, J., Fluharty, M., Shrestha, S., Robbins, T., & Dalley, J. (2016). Social dominance in rats: effects on cocaine self-administration, novelty reactivity and dopamine receptor binding and content in the striatum. Psychopharmacology, 233(4), 579-589. https://doi.org/10.1007/s00213-015-4122-8
Koob, G. (2021). Drug Addiction: Hyperkatifeia/Negative Reinforcement as a Framework for Medications Development. Pharmacological Reviews, 73(1), 163-201. https://doi.org/10.1124/pharmrev.120.000083
Koob, G. (2022). Anhedonia, Hyperkatifeia, and Negative Reinforcement in Substance Use Disorders. Current Topics in Behavioral Neurosciences, 58, 147-165. https://doi.org/10.1007/7854_2021_288
Koob, G., & Le Moal, M. (2008). Neurobiological mechanisms for opponent motivational processes in addiction. Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences, 363(1507), 3113-3123. https://doi.org/10.1098/rstb.2008.0094
Korom, M., Valadez, E., Tottenham, N., Dozier, M., & Spielberg, J. (2024). Preliminary examination of the effects of an early parenting intervention on amygdala-orbitofrontal cortex resting-state functional connectivity among high-risk children: A randomized clinical trial. Development and Psychopathology, 1-9. https://doi.org/10.1017/S0954579423001669
Lawrence, C., & Marini, C. (2024). Loneliness and Marital Quality as Predictors of Older Adultsʼ Insomnia Symptoms. International Journal of Aging and Human Development, 98(2), 243-262. https://doi.org/10.1177/00914150231208013
Leshner, A. (1997). Addiction Is a Brain Disease, and It Matters. Science, 278(5335), 45-47. https://doi.org/10.1126/science.278.5335.45
Martinez, D., Orlowska, D., Narendran, R., Slifstein, M., Liu, F., Kumar, D., Broft, A., Van Heertum, R., & Kleber, H. (2010). Dopamine Type 2/3 Receptor Availability in the Striatum and Social Status in Human Volunteers. Biological Psychiatry, 67(3), 275-278. https://doi.org/10.1016/j.biopsych.2009.07.037
McEwen, B. (1998). Stress, Adaptation, and Disease: Allostasis and Allostatic Load. Annals of the New York Academy of Sciences, 840(1), 33-44. https://doi.org/10.1111/j.1749-6632.1998.tb09546.x
Migliaro, M., Sánchez-Zavaleta, R., Soto-Tinoco, E., Ruiz-Contreras, A., Méndez-Díaz, M., Herrera-Solís, A., Pérez, M., & Prospéro-García, O. (2022). Dominance status is associated with a variation in cannabinoid receptor 1 expression and amphetamine reward. Pharmacology Biochemistry and Behavior, 221, 173483. https://doi.org/10.1016/j.pbb.2022.173483
Nederhof, E., & Schmidt, M. (2012). Mismatch or cumulative stress: Toward an integrated hypothesis of programming effects. Physiology & Behavior, 106(5), 691-700. https://doi.org/10.1016/j.physbeh.2011.12.008
Olds, J., & Milner, P. (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. Journal of Comparative and Physiological Psychology, 47(6), 419-427. https://doi.org/10.1037/h0058775
Prospéro-García, O., Ruiz-Contreras, A., Morelos, J., Herrera-Solis, A., & Mendez-Díaz, M. (2021). Fragility of reward vs antifragility of defense brain systems in drug dependence. Social Neuroscience, 16(2), 145-152. https://doi.org/10.1080/17470919.2021.1876759
Romano-López, A., Méndez-Díaz, M., García, F., Regalado-Santiago, C., Ruiz-Contreras, A., & Prospéro-García, O. (2016). Maternal separation and early stress cause long-lasting effects on dopaminergic and endocannabinergic systems and alters dendritic morphology in the nucleus accumbens and frontal cortex in rats. Developmental Neurobiology, 76(8), 819-831. https://doi.org/10.1002/dneu.22361
Romano-López, A., Méndez-Díaz, M., Ruiz-Contreras, A., Carrisoza, R., & Prospéro-García, O. (2012). Maternal separation and proclivity for ethanol intake: A potential role of the endocannabinoid system in rats. Neuroscience, 223, 296-304. https://doi.org/10.1016/j.neuroscience.2012.07.071
Ruiz-Contreras, A., López-Juárez, J., Román-López, T., Caballero-Sánchez, U., Ortega-Mora, I., Méndez, M., Herrera-Solís, A., Vadillo-Ortega, F., & Prospéro-García, O. (2023). Early Life Parent-Child Positive Interactions (Points) Prevent the Development of Psychiatric Symptoms. Revista Internacional de Investigación en Adicciones, 9(2), 180-190. https://doi.org/10.28931/riiad.2023.2.07
Salin, A., Dugast, E., Lardeux, V., Solinas, M., & Belujon, P. (2023). The amygdala-ventral pallidum pathway contributes to a hypodopaminergic state in the ventral tegmental area during protracted abstinence from chronic cocaine. British Journal of Pharmacology, 180(14), 1819-1831. https://doi.org/10.1111/bph.16034
Shin, L., & Liberzon, I. (2010). The Neurocircuitry of Fear, Stress, and Anxiety Disorders. Neuropsychopharmacology, 35(1), 169-191. https://doi.org/10.1038/npp.2009.83
Shorer, S., Weinberg, M., Koko, Y., & Marom, D. (2024). “My Scar”: Posttraumatic Loneliness as a Source of Pain and Resource for Coping. Qualitative Health Research. https://doi.org/10.1177/10497323241226599
Solomon, R., & Corbit, J. (1974). An opponent-process theory of motivation: I. Temporal dynamics of affect. Psychological Review, 81(2), 119-145. https://doi.org/10.1037/h0036128
Sterling, P., & Eyer, J. (1988). Allostasis: A new paradigm to explain arousal pathology. In: S. Fisher & J. Reason (Eds.), Handbook of life stress, cognition and health (pp. 629-649). John Wiley & Sons.
Suzuki, Y., Suzuki, T., Takagi, M., Murakami, M., & Ikeda, T. (2024). Bidirectional Longitudinal Association between Back Pain and Loneliness in Later Life: Evidence from English Longitudinal Study of Ageing. Annals of Geriatric Medicine and Research. https://doi.org/10.4235/agmr.23.0136
Taleb, N. N., & Douady, R. (2013). Mathematical definition, mapping, and detection of (anti)fragility. Quantitative Finance, 13(11), 1677-1689. doi: 10.1080/14697688.2013.800219
Twait, E., Basten, M., Gerritsen, L., Gudnason, V., Launer, L., & Geerlings, M. (2023). Late-life depression, allostatic load, and risk of dementia: The AGES-Reykjavik study. Psychoneuroendocrinology, 148, 105975. https://doi.org/10.1016/j.psyneuen.2022.105975
Volkow, N., & Blanco, C. (2023). Substance use disorders: a comprehensive update of classification, epidemiology, neurobiology, clinical aspects, treatment and prevention. World Psychiatry, 22(2), 203-229. https://doi.org/10.1002/wps.21073
Volkow, N., & Morales, M. (2015). The Brain on Drugs: From Reward to Addiction. Cell, 162(4), 712-725. https://doi.org/10.1016/j.cell.2015.07.046
Volkow, N., Wang, G., Fowler, J., Tomasi, D., Telang, F., & Baler, R. (2010). Addiction: Decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brainʼs control circuit. BioEssays, 32(9), 748-755. https://doi.org/10.1002/bies.201000042
Wiers, C., Shokri-Kojori, E., Cabrera, E., Cunningham, S., Wong, C., Tomasi, D., Wang, G., & Volkow, N. (2016). Socioeconomic status is associated with striatal dopamine D2/D3 receptors in healthy volunteers but not in cocaine abusers. Neuroscience Letters, 617, 27-31. https://doi.org/10.1016/j.neulet.2016.01.056
Willuhn, I., Burgeno, L., Groblewski, P., & Phillips, P. (2014). Excessive cocaine use results from decreased phasic dopamine signaling in the striatum. Nature Neuroscience, 17(5), 704-709. https://doi.org/10.1038/nn.3694